"Unburned ethanol emissions reduction using a fuel heating system"

Martin Leder
System & Advanced Engineering
martin.leder@br.bosch.com

1. Flex-Fuel in Brazil

2. FlexStart® System for flex-fuel vehicles

Market Fuels for Otto Engines

Property	Gasoline E0	E85	Ethanol E100
Air-fuel ratio	14,0	9,8	9,0
GGE (gasoline-gallon equivalent)	1,0 (100%)	1,39 (71,9%)	1,5 (66,6%)
Latent heat of vaporization [KJ/kg]	350 - 450	800	904
Evaporation curve/value [°C]	35 - 200	78	78
Octane number [RON]	>91	>=108	108

Brazil is the only country that uses hydrous ethanol

E100 cold start solutions

Sub-tank system (old technology)

Sub-tank (gasoline reservoir)

FlexStart® (new technology)

Fuel rail with heating elements

New technology has improved cold start and post-start behavior with E100

- 1. Flex-Fuel in Brazil
- 2. FlexStart® System for flex-fuel vehicles

Temperature Effect on mixture formation

Due to the high latent heat and to the lower vapor pressure of ethanol, at temperatures below 12,8°C, the injected ethanol does not produce enough vapor to assure a combustion process to be initiated and sustained.

FlexStart® - heating process

4Cyl. 2,5I 16V

4 Cyl.1,6l 16V

2009

2012

2013

2014

2015

1. Flex-Fuel in Brazil

2. FlexStart® System for flex-fuel vehicles

Brazilian Emission Regulation for Passenger Cars

Valid for Passenger cars and light commercial Vehicles <= 1700 kg

MY	Stage	со	NMHC ¹	NMOG ²	NOx
2007+	L4	2.0	0.16	n/a	0.25
2009+	L5	2.0	0.05	n/a	0.12
2014+	L6	1.3	0.05	n/a	0.08
2018+	L7	1.3	n/a	0.05	0.03

- Existing and new technologies packages need to be capable for upcoming L7 regulation
- Expected: discount of unburned ethanol no longer allowed

¹ NMHC: non-methane hydrocarbon (deduction of unburned ethanol allowed)

² NMOG = non-methane organic gas (NMHC + aldehyde + ethanol)

Project definition

1. Motivation:

To investigate the possibility to reduce NMHC emissions by heating up the fuel. Scope restricted to:

- Emission test FTP75 cycle
- E100 fuel usage (Brazilian ethanol)
- Fuel heating via FlexStart®
 - Operation range extended to ambient temperature

• Engine: 1,6L 16V Flex-fuel

Mileage: 4.800 kmECU type: ME7.4.9

• Test Fuel: E100

Emission Cycle: FTP75Tests performed: 13

2. Target:

Achieve L6 NMHC emission limits without discounting unburned ethanol

L6 emission limits	g/km	
СО	1,3	
NMHC	0,05	
NOx	0,08	

Baseline calibration emission

- Study focus on Phase1 of FTP75 cycle (Cold start phase 505 sec)
- Catalyst light-off after 80 seconds dramatically reduces HC emissions

NMHC-

NMHC (g/

Phase

NMHC extrapolation Strategy (Phase 1 to Total NMHC emission)

From Norm NBR 6601, the gas mass emission is calculated by:

$$Mt_{city} = 0.43 * \frac{M_1 * D_1 + M_2 * D_2}{D_1 + D_2} + 0.57 * \frac{M_3 * D_3 + M_2 * D_2}{D_3 + D_2}$$

 $\overline{considering}: D_1 = D_3$

$$Mt_{city} = \frac{1}{D_1 + D_2} * (0.43 * (M_1 * D_1 + M_2 * D_2) + 0.57 * (M_3 * D_1 + M_2 * D_2))$$

$$Mt_{city} = \frac{1}{D_1 + D_2} * (0.43 * M_1 * D_1 + M_2 * D_2 + 0.57 * M_3 * D_1)$$

$$Mt_{city} = 0.43*0.48*M_1 + 0.52*M_2 + 0.57*0.48*M_3$$

$$Mt_{city} = 0.21 * M_1 + 0.52 * M_2 + 0.27 * M_3$$

assumption: $M_2 = M_3 = 0$ — —

$$Mt_{citv} = 0.21 * M_1$$

 $T NMHC_{F100} = 0.21 * NMHC_{Phase1}$

HC (g/km)	NMHC (g/ km)	NMHC- EtOH (g/ km)
0,370	0,280	0,080
0,023	0,000	0,000
0,025	0,000	0,000
0,096	0,058	0,017
	ľ	
	0,370 0,023 0,025	0,370 0,280 0,023 - 0,000 0,025 0,000

Note:

Mtcity: emissions in FTP75 cycle

Mx: gas emissions per cycle Phase (1, 2 or 3) [g/km]

Dx: distance per cycle Phase (D1=5,7 km; D2=6,2 km; D3=5,7 km)

Total E100 NMHC emission corresponds to 21% of Phase 1 emission

Vehicle test condition – engine temperatures

Low dispersion of engine operation conditions within the performed tests

copying and passing on to third parties

Vehicle test condition – fuel temperature

Fuel heating system active only during the first 2 minutes of test cycle

HC emission comparison (Baseline vs. cal. _D)

HC emission comparison (Baseline vs. cal. D)

Calibration changes: Start injection Factor

Calibration changes: Acceleration enrichment factor

Optimization: NMHC & EtOH emission (Phase 1)

GS/ENS-LA | 10/16/2014 | © Robert Bosch Ltda 2014. Reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as

Calibration	Average NMHC (Phase 1) [g/km]	
Baseline	0,304	
Calibration D	0,158	
Reduction (%)	48%	

13 tests performed: 3 Baselines and 7 different optimized calibrations

copying and passing on to third parties

Conclusion

48% emission reduction

Fuel heating is able to significantly reduce NMHC emissions:

- L6 NMHC emission limit (0,05 g/km) could be reached WITHOUT relying on unburned ethanol discount
- Fuel heating is particularly important prior to catalyst light-off, when HC emission have highest peak
- Extending the operation range of FlexStart represents an efficient solution to E100 emission reduction

FlexStart® is an efficient solution to reduce E100 NMHC emissions

Thank you!

Martin Leder
System & Advanced Engineering
martin.leder@br.bosch.com

Gasoline Systems

