

Emissions Characterization for D-EGR[®] Vehicle

Cary Henry

ENGINE, EMISSIONS & VEHICLE RESEARCH

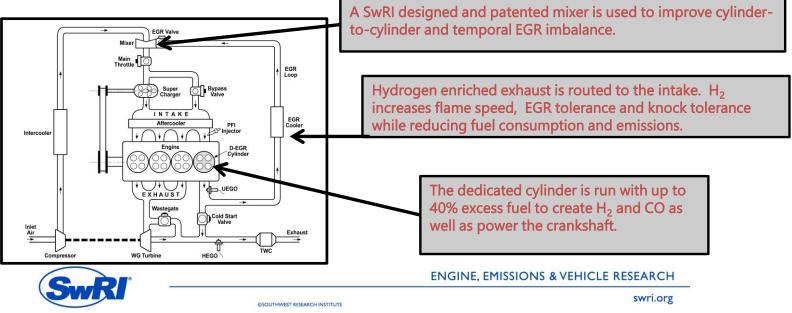
©SOUTHWEST RESEARCH INSTITUTE

Baseline GDI Vehicle – 2012 Buick Regal GS

- Buick Regal GS uses state-of-the-art turbocharged, direct-injected gasoline engine
- Down-sized engine provides fuel economy improvement on regulated drive cycle
- Stoichiometric combustion system uses conventional TWC to achieve Tier 2 Bin 5 emission levels

2012 LHU GDI Turbo			
Configuration	Inline 4-cylinder		
Displacement	2.0 L		
Bore and Stroke	86 mm x 86 mm		
Compression Ratio	9.25:1		
Max. Power	220 hp @ 5300 rpm		
Max Torque	350 Nm @ 2000 - 4000		
Max. Torque	rpm		
Max. Engine Speed	6350 rpm		

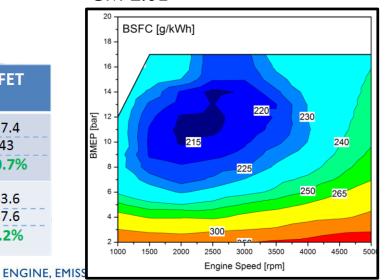
ENGINE, EMISSIONS & VEHICLE RESEARCH


©SOUTHWEST RESEARCH INSTITUTE

Advanced Concept: Dedicated EGR (D-EGR[®]) • SwRI Patented Novel Engine Architecture

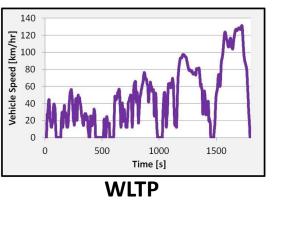
- One or more cylinders have their exhaust connected directly to the intake system
- The EGR composition or quality is de-coupled from the exhaust composition; rich

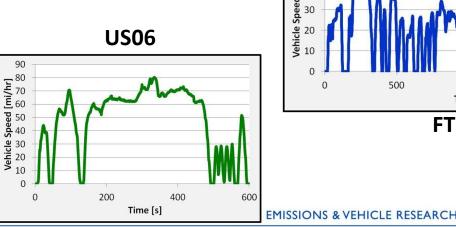
combustion in the dedicated cylinder can be used to make reformate (H_2 and CO)

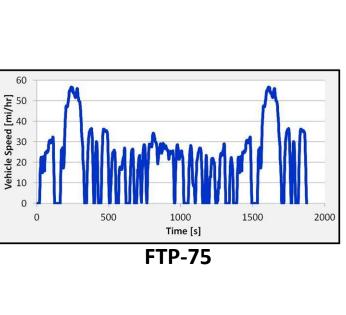

D-EGR Results in Improved Fuel Economy

Stock (EPA) D-EGR % Change	Bag 1	Bag 2	Bag 3	FTP	HWFET
Fuel Economy (Test uses Regal GS dyno coefficients) [MPG]	23 24 4.6%	22.2 25.1 12.9%	26.7 28.7 7.4%	23.5 25.7 9.5%	37.4 43 10.7%
Fuel Economy (Test uses Regal Premium dyno coefficients) [MPG]	24 25.6 7%	23.1 27 17%	28.4 30.7 8%	24.5 27.6 12.7%	43.6 47.6 9.2%

- Three Engines Run As D-EGR Engines
 - Chrysler 2.4L
 - Renault 2.0L
 - GM 2.0L

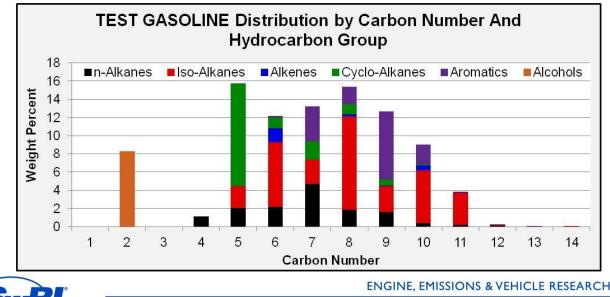





swri.org

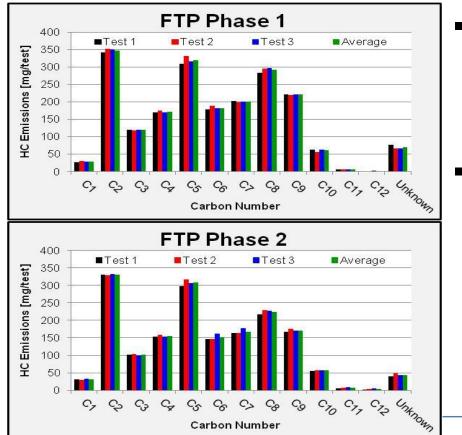
Emissions Characterization Methods – Vehicle Drive Cycles

- World Light Transient Protocol (WLTP)
- Federal Test Procedure 75 (FTP-75)
- Supplemental FTP US06

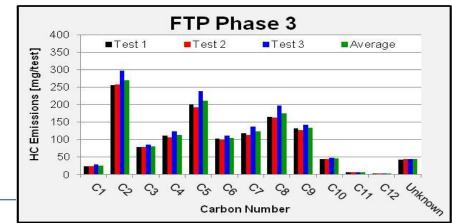


Fuel Analysis

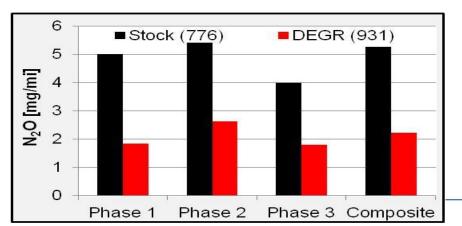
- Complete HC Breakdown of Test Fuel
- Used for Comparison with Exhaust Samples
- 10% EtOH, 87 AKI LEV-III Type Certification Fuel

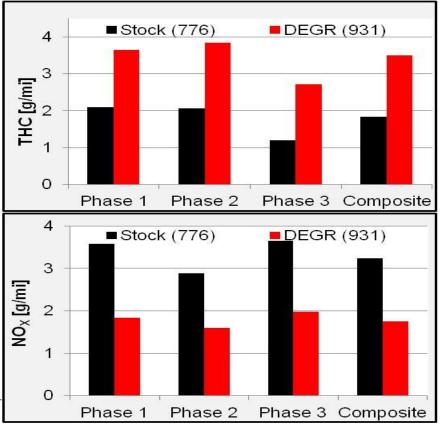


swri.org


©SOUTHWEST RESEARCH INSTITUTE

HC Speciation Test Repeatability


- Three FTP-75 Cycles Were Evaluated to Quantify Repeatability of HC Speciation
 - Repeatability was determined to be excellent over these three tests
- Future Test Cycles Were Evaluated Twice to Save Resources



FTP-75 Emissions Summary

- HC Emissions were Observed to Increase by ~100% Over the FTP-75
- NO_X and N₂O Emissions were Reduced by ~50%
- CO was Nearly Constant Between Both Vehicles, so It is Not Shown

WLTP Emissions Summary

- HC Emissions were Observed to Increase by ~60% Over the WLTP
- NO_X Emissions Decreased by Nearly 80% and N₂O Emissions Decreased by ~60%
- CO was Nearly Constant Between Both <u>Vehicles, so It is Not Shown</u>

DEGR (931)

Phase 4 Composite

Stock (776)

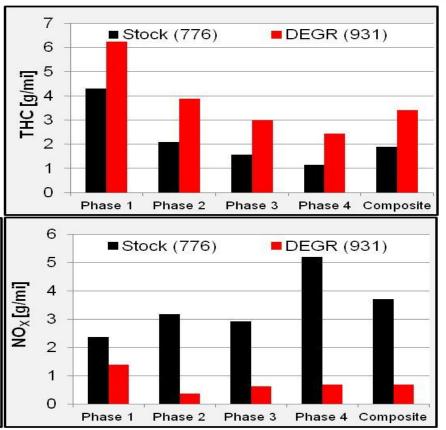
Phase 2

Phase 3

8

6

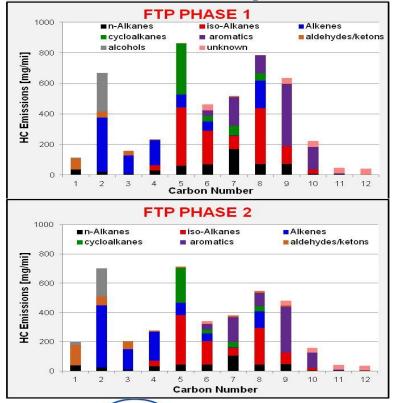
5


4 3

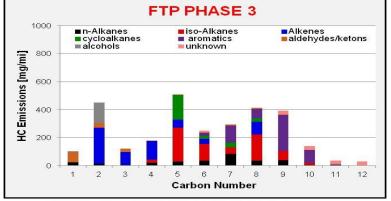
2

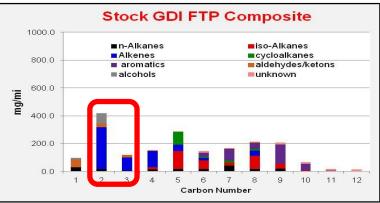
0

Phase 1

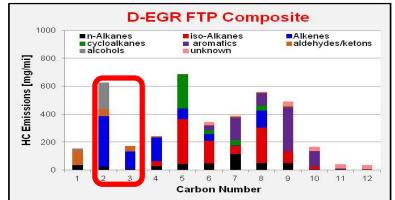

N₂O [mg/m]

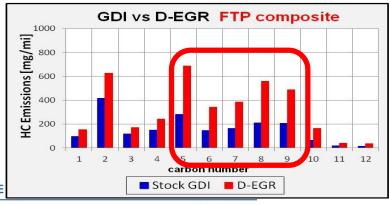
D-EGR


FTP-75 HC Speciation Results

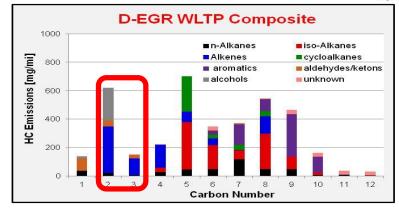

- Phase 3 of the FTP-75 Cycle Had the Lowest Total HC Emissions
- HC Distribution Varied Among the Phases
 - Phase 1: HC Emissions were dominated by C5 and C8 species
 - Phases 2 & 3: HC emissions were dominated
 bv C2 and C5 species

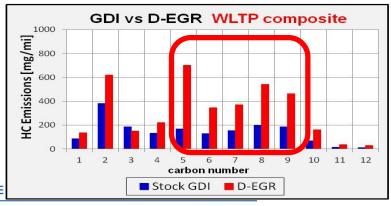
ENGINE, EMISSIONS & VEHICLE RESEARCH


D-EGR vs Stock GDI FTP-75 HC Speciation Results



- Clear Differences in HC Emissions Between Stock GDI and D-EGR Were Observed
 - EtOH was much higher for D-EGR exhaust than stock GDI
 - Other than EtOH, C1 C4 HC species and mass were similar to stock GDI
 - Largest difference in HC speciation was a substantial increase in C5 – C9 species present in D-EGR exhaust


©SOUTHWEST RESEARCH INSTITUTE


D-EGR vs Stock GDI WLTP HC Speciation Results

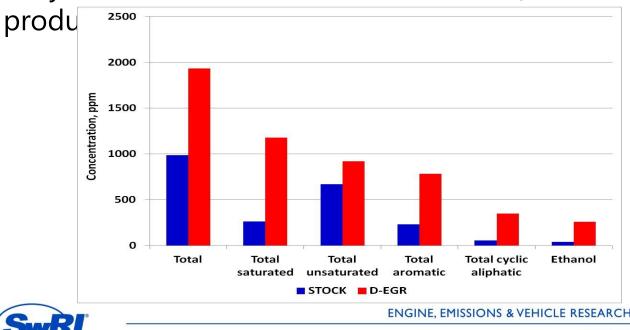
- Clear Differences in HC Emissions Between Stock GDI and D-EGR Were Observed
 - EtOH was much higher for D-EGR exhaust than stock GDI
 - Other than EtOH, C1 C4 HC species and mass were similar to stock GDI
 - Largest difference in HC speciation was a substantial increase in C5 – C9 species present in D-EGR exhaust

©SOUTHWEST RESEARCH INSTITUTE

Vehicle Emissions Results – Further Hydrocarbon Speciation

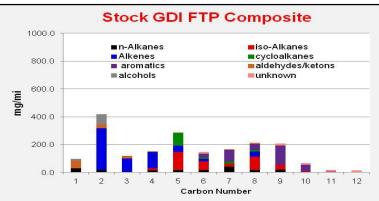
- D-EGR vs. Stock
- Total HC = 2x
- Saturated = 4.5x
- Unsaturated = 1.4x
- Aromatic = 3.4x
- Cyclic Aliphatic = 6
- Ethanol = 6.8x

HC	Name	STOCK	D-EGR	
CH4	methane	15	69	
CH2O	Formaldehyde	78	102	
C2H4	Ethene	315	297	
C2H6	Ethane	17	18	
C2H4O	Acetaldehyde	31	53	
C2H5OH	Ethanol	38	259	
C3H6	Propene	150	114	
C3H8	Propane	2	6	
C4H8	Butene	110	154	
C4H10	n-Butane	6		
C4H10	iso-butane	6		
C5H10	pentene	34	86	
C5H12	n-pentane	10		
C5H12	iso-pentane	27	59	
C5H10	cyclopentane	52	319	
C6H12	hexene	14	60	
C6H14	n-hexane	9	63	
C6H14	iso-hexane	36	216	
C6H12	cyclohexane	5	31	
C6H6	benzene	30	27	

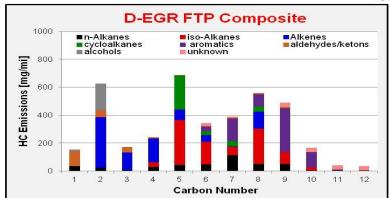

HC	Name	STOCK	D-EGR	
	Name	STUCK	D-EGK	
C7H14	heptene	1	5	
C7H16	n-heptane	23	145	
C7H16	iso-heptane	12	77	
C7H8	Toluene	58	146	
C8H16	octene	13	151	
C8H18	n-octane	10	59	
C8H18	iso-octane	58	316	
C8H10	dimethylbenzene	34	100	
C9H20	n-nonane	10	59	
C9H20	iso-nonane	22	92	
C9H12	mesitylene	78	367	
C10H14	Durene	30	142	
	Total	985	1933	
Total satu	otal saturated 263		1179	
Total uns	unsaturated 668 920		920	
Total aro	matic	230	782	
Total cyc	lic aliphatic	57	350	

Values are concentration in ppmV

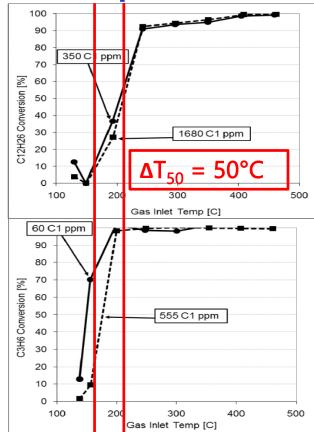
Vehicle Emissions Results – Further Hydrocarbon Speciation



- Majority of Increased HCs are Unburned Fuel
 - Only small increase in unsaturated HCs (combustion


Boundary Conditions for Low Temperature Catalysis Evaluation

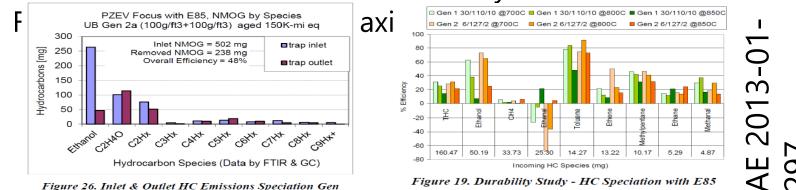
- D-EGR HC Mixture is Significantly Different from Stock GDI
- USCAR LT Oxidation Protocol Does Not Take Into Account Differences in HC Concentration or Speciation for LTC Gasoline Strategies
- Boundary Conditions Can Have a Significant Impact on the Observed Behavior of New Catalyst



Constant Components	Stoichiometric GDI [S-GDI]	Clean Diesel Combustion [CDC]		Lean GDI [L-GDI]	Low Temp Combustion of Gasoline [LTC-G]	Low Temp Combustion of Diesel [LTC-D]
[O ₂]	0.74%	12%		9%	12%	12%
[H ₂ O]	13%	6%		8%	6%	6%
[CO ₂]	13%	6%		8%	6%	6%
[H ₂]	1670 ppm	100 ppm		670 ppm	670 ppm	400 ppm
Variable Components		all in [ppm]				
[CO]	5000	500		2000	2000	2000
[NO]	1000	200		500	100	100
		Hydrocar	Hydrocarbon – [ppm] on C ₁ bisis**			
Total [HC]	3000	1400		3000	3000	3000
[C ₂ H ₄]	700 (1050)	500 (778)		700 (1050)	700 (1050)	500 (1667)
[C ₃ H ₆]	1000 (1500)	300 (467)		1000 (1500)	1000 (1500)	300 (1000)
[C ₃ H ₈]	300 (450)	100 (155)		300 (450)	300 (450)	100 (333)
[i-C ₈ H ₁₈]	1000 (0)	-		1000 (0)	1000 (0)	-
[n-C ₁₂ H ₂₆]		500 (0)				2100 (0)

ENGINE, EMISSIONS & VEHICLE RESEARCH

Hydrocarbon Species Affect Lightoff Temperature


- The Impact of HC Species Have Been Well Documented in the Literature
- Different HC Species have Different Reactivity, and Can Affect HC Light-Off on PGM Catalysts
- Short Chain Alkenes Like Ethene and Propene are Typically More Reactive than Long Chain Alkanes
- Similarly, Oxygenated Species Like EtOH Can be Difficult to React

SAE 2011-01-1137 ENGINE, EMISSIONS & VEHICLE RESEARCH

Advanced Concepts Require Detailed Understanding of HC Speciation

- New Strategies, Like HC Traps are Very Selective for HC Adsorption
- Traps Can be Tuned for Different Species, but HC Composition Must be Known
- New Combustion Strategies Will Likely Need Alternative

2A

ENGINE, EMISSIONS & VEHICLE RESEARCH

Project Benefits: Emission Control System Design

- Understanding The Detailed Composition Of HC Emissions From D-EGR Combustion Technology Will Enable The Design And Development Of Optimized Aftertreatment Systems
 - Emissions characterization component of project will determine requirements for

aftertreatment based HC control for LEV-III and Euro 6

- Exhaust temperature profile will provide guidance for catalyst selection
- Development Of Novel Emission Control Solutions
 - Typical stoichiometric engines utilize three way catalysts for emissions reduction
 - Due to changing emissions chemistry and availability of H₂ reformate on-board, the D-EGR vehicle may be able to utilize alternative emission control solutions to reduce fuel consumption
 - Potential strategies include: Zeolite HC traps, passive NO_X adsorbers, HC-SCR, and H₂ SCR

ENGINE, EMISSIONS & VEHICLE RESEARCH

Cary Henry chenry@swri.org (210) 522-2424 www.ac2at.swri.org

ENGINE, EMISSIONS & VEHICLE RESEARCH

©SOUTHWEST RESEARCH INSTITUTE