Challenges and Opportunities for Engine Ancillary Electrification

Thanos Alexakis AVID Technology Ltd. Engine Expo 2016

01-06-2016

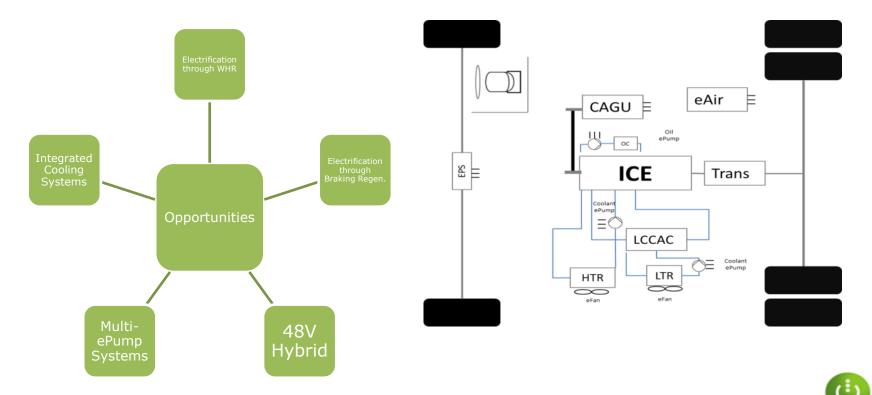
Introduction – AVID Technology Ltd.

- Based in the NE of England
- Leader in design and manufacture of electrification solutions that improve efficiency, emissions and reliability of heavy duty and high performance vehicles
- Specialist in design and intelligent control of vehicle electrified ancillary systems known as micro and mild hydridisation

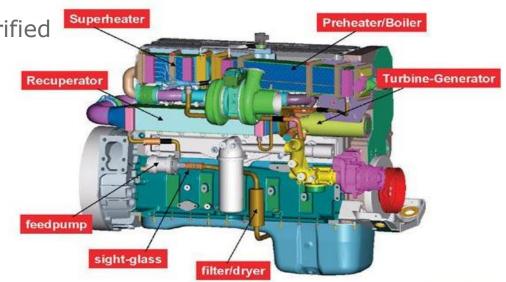
Introduction – AVID Technology Ltd.

- Pioneered the electrification of thermal management systems in transit bus applications
- Oustomers include leading manufacturers of heavy duty and high performance electric, hybrid and ICE powertrains
- Systems development, manufacture and integration of complex hybrid and electric vehicle powertrain

Engine Ancillary Electrification

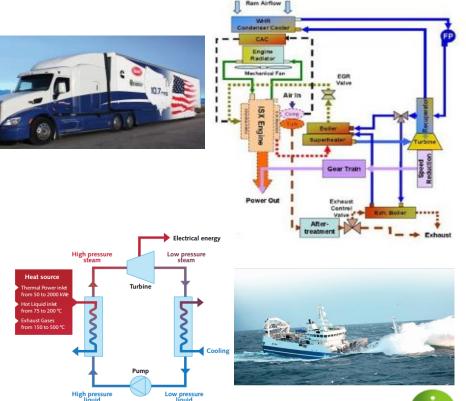


Engine Ancillary Electrification

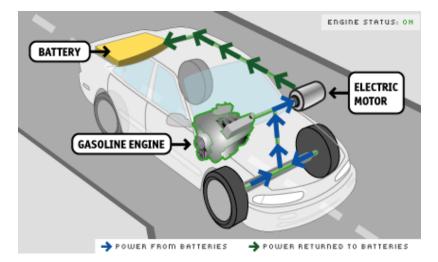


Engine Ancillary Electrification A Systems Approach

Electrification through Waste Heat Recovery


- The WHR mover can be linked to crank or generate electricity
- Use waste heat to power electrified ancillaries
 - ICE cooling eFans
 - Coolant ePump
 - WHR fluid ePump
 - WHR condenser cooling eFans
 - Steering
 - Air compressor

Electrification through Waste Heat Recovery


- Our Cummins SuperTruck
 - Organic Rankine Cycle
 - Power available to crank
 - 50% efficiency target
 - Efficient Ship
 - Organic Rankine Cycle
 - Turbo-generator charging batteries
 - I0% fuel saving target

Electrification through Brake Regen.

- Smart control of alternator up to full crank assist where the eMachine can be a generator or assist motor.
- Energy recovered is "free" as the engine is not fuelling during regen.
- Energy recovered during braking can be used to power electrical ancillaries
 - ICE Cooling eFans
 - Coolant ePump
 - Steering
 - Air compressor
 - HVAC
- AVID systems offer up to 7% fuel economy in Real Driving Environment (RDE)

Comparison Ancillary Electrification

	2.0 TD Passenger Car		Commercial Vehicle 6.7L Transit Bus	
System	12V	48V	24V	48V
Coolant Pump	80A	20A	80A	40A
Power Steering	60A	15A	180A	90A
Cooling Fan	60A	15	25A x 6	12.5A x 6
Air Compressor	N/A	N/A	360A	180A
15kW Crank Assist Generator	1,250A	312A	620A	312A
Main Engine Oil Pump	160A	40A	300A	150A

Systems electrification is effective because of the large amount of power used by parasitic systems in Real Driving Environment

Benefits of 48V Electrification

- Helps RDE performance of vehicle as components are decoupled from engine
- Supports Start Stop Engine Operation as functions can operate when engine is off, e.g. coolant or oil circulation
- Enabler for engine down sizing
- Improved thermal management for after treatment systems through improved "cooling" system and direct heating
- Improved safety = reduced cost and complexity compared to higher voltage hybrid systems
- Enabler for future technologies e.g electronic valve actuation, eBoosting, WHR

eFan Micro Hybrid Installations

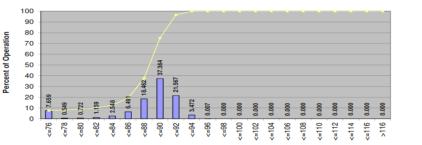
- Ouble decker bus
 - 6 x 24V eFans
 - 9% fuel saving
 - 2 year PBP

Oump Truck

- 22 x 24V eFans
- Alternator upgrade
- 55 kW saving
- I1% fuel saving

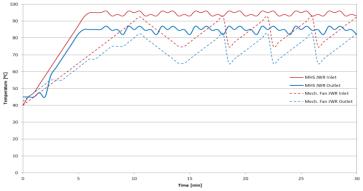
Excavator

- I6 x 24V eFans
- 38 kW saving
- 12% fuel saving

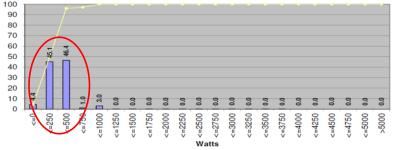


eFan Micro Hybrid RDE Performance

Percent of Operation


Radiator Coolant Temperature Measured by Micro Hybrid ECU

Temperature (DegF or DegC)


Coolant temp. levels of 86°C – 92°C in RDE

JWR Temperature Variation Comparison

Coolant temperature variation in conventional and eFan cooling kit

Micro Hybrid System Power Consumption - Histogram Plot

500W peak power draw out of 3kW installed power

Electrification of Main Engine Coolant Pumps

- BMW pioneered electric coolant pumps for several years
- With higher voltage levels ePumps can now meet higher flow – head requirements
- ePumps can be controlled in conjunction with eFan system to improve thermal management and ensure power economy

Electrification of Air Compressor

- Case study on 180hp Euro VI transit bus
- Compressor downsized by 75%
- Average RDE power consumption reduced by 80%
- Considerable reduction in operation noise levels

Electrification of Oil Pump

- Fuel economy improvement of 2%
- Increased reliability
- Able to meet cold cranking requirements at higher voltage levels
- Maintain oil pressure in gearbox during stop-start

AVID Technology Limited 3D Admiral Business Park Nelson Industrial Estate Cramlington Northumberland NE23 1WG United Kingdom

w. www.avidtp.com

- e. thanos.alexakis@avidgr.com
- p. +44 (0) 1670707040
- li: <u>http://uk.linkedin.com/in/drathanasiosalexakis/</u>

